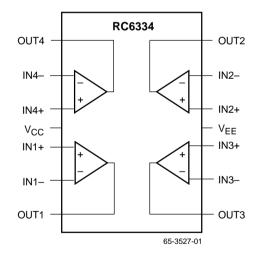
RC6334 Quad Video Amplifier

Features

- Quad video amplifier
- 175 MHz -3 dB Bandwidth (Av = 2)
- 50 MHz ±0.1 dB gain flatness
- Unity gain stable
- 0.06% differential gain (Av = 1, $RL = 150\Omega$)
- 0.06° differential phase (Av = 1, RL = 150 Ω)
- High CMRR (95dB), High PSRR (80 dB)
- Dual ±5V power supply
- Low offset 3.0 mV typical
- 14-pin narrow SO package
- 250V/µs slew rate
- Fast settling time: 0.1% in 15 ns
- TTL or CMOS compatible

Applications


- RGB amplifiers
- Video instrumentation amplifier
- Selectable gain amplifier
- Active filters
- Set-top box Buffers/Drivers

Description

The RC6334 consists of four low power, wide band voltage feedback operational amplifiers. Each channel is capable of delivering a load current of at least 35mA.

The amplifiers are optimized for video applications where low differential gain and low phase distortion are significant requirements.

Block Diagram

Pin Assignments

Pin Definitions

Pin Name	Pin Number	Pin Function Description			
IN1–	6	Amplifier 1 inverting input			
IN1+	5	Amplifier 1 non-inverting input			
IN2-	13	Amplifier 2 inverting input			
IN2+	12	Amplifier 2 non-inverting input			
IN3–	9	Amplifier 3 inverting input			
IN3+	10	Amplifier 3 non-inverting input			
IN4-	2	Amplifier 4 inverting input			
IN4+	3	Amplifier 4 non-inverting input			
OUT1	7	Amplifier 1 output			
OUT2	14	Amplifier 2 output			
OUT3	8	Amplifier 3 output			
OUT4	1	Amplifier 4 output			
Vcc	4	Analog positive supply			
VEE	11	Analog negative supply			

Absolute Maximum Ratings

(beyond which the device may be damaged)¹

Parameter		Min	Тур	Max	Units
Vcc	Positive power supply			7	V
Vee	Negative power supply			-7	V
	Differential input voltage			0	V
	Operating Temperature	0		+70	°C
	Storage Temperature	-40		±125	°C
	Junction Temperature			150	°C
	Lead Soldering (10 seconds)			240	°C
	bircuit tolerance: nore than one output can be shorted to ground.				

Notes:

1. Functional operation under any of these conditions is NOT implied.

Operating Conditions

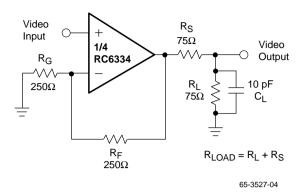
Parameter		Min	Тур	Max	Units
Vcc	Power Supply Voltage	4.75	5.0	5.25	V
VEE	Negative Supply Voltage	-4.75	-5.0	-5.25	V
θJA	SO14 Thermal Resistance		105		°C/W

DC Characteristics

 $V_{CC} = 5V$, $V_{EE} = -5V$, $A_V = 2$, $R_{LOAD} = 150\Omega$, $T_A = 0^{\circ}C$ to $70^{\circ}C$, unless otherwise specified. Open Loop.

Parameter		Conditions	Min	Тур	Max	Units
Vos	Input Offset Voltage	No Load		3	±10	mV
$\Delta V_{OS}/\Delta T$	Offset Voltage Drift ¹			±6	±30	μV/°C
IB	Input Bias Current			±1	±5	μΑ
$\Delta I_{B}/\Delta T$	Input Bias Current Drift ¹			±8	±40	nA/°C
Rin	Input Resistance ¹		1			MΩ
Cin	Input Capacitance ¹			0.5	2	pF
CMIR	Common Mode Input Range		±2.5			V
CMRR	Common Mode Rejection Ratio	No Load	70	100		dB
PSRR	Power Supply Rejection Ratio	No Load	65	80		dB
ls	Quiescent Supply Current	No Load		33	48	mA
Rout	Output Impedance (Closed Loop) ¹	Enabled, At DC		0.2		Ω
IOUT	Output Current	Per Amplifier	35			mA
Vout	Output Voltage Swing	No Load	±2.5	±3.0		V
		RL = 150Ω	±2.5	±3.0		V
Avol	Open-loop Gain		60	75		dB

Note:


1. Guaranteed by design.

AC Characteristics

 $V_{CC} = 5V$, $V_{EE} = -5V$, $A_V = 2$, $T_A = 0$ to 70° C, $R_{LOAD} = 150\Omega$, $R_G = R_F = 250\Omega$, $C_L = 10$ pF, unless otherwise specified. Closed Loop. Guaranteed by Design. See Typical Test Circuit.

Parame	ter	Conditions	Min	Тур	Max	Units		
Frequency Response								
BW	-3 dB Bandwidth (A \vee = 2)	VOUT = 0.4 Vpp		+175		MHz		
		VOUT = 0.8 Vpp	75	90		MHz		
Flat	±0.1 dB Bandwidth	VOUT = 0.4 Vpp	50	60		MHz		
Peak	Maximum Small Signal AC Peaking	VOUT = 0.8 Vpp		0.01		dB		
Xtalk	Crosstalk Isolation	@ 5 MHz		50		dB		
Time Do	omain Response							
tr1, tf1	Rise and Fall Time 10% to 90%	2V Output Step		10	15	ns		
ts	Settling Time to 0.1%	2V Output Step		15		ns		
OS	Overshoot	2V Output Step		5		%		
US	Undershoot	2V Output Step		2		%		
SR	Slew Rate	$V_{OUT} = \pm 2.0 V$	200	250		V/µs		
Distorti	on		·					
HD ₂	2nd Harmonic Dist. @ 20 MHz	VOUT = 0.8 Vpp		-48		dB		
HD3	3nd Harmonic Dist. @ 20 MHz	VOUT = 0.8 Vpp		-56		dB		
Video P	erformance							
DG	Diff. Gain (p-p), NTSC & PAL	$R_L = 150\Omega$, $V_{OUT} = \pm 1.5V$		0.06		%		
DP	Diff. Phase (p-p), NTSC & PAL	$R_L = 150\Omega$, $VOUT = \pm 1.5V$		0.06		Deg.		
NF	Noise Floor	>100kHz		-130		dB rms		

Test Circuit

Applications Discussion

Capacitive Load

The RC6334 can drive a capacitive load from 10 to over 50 pF. In back terminated video applications, bandwidth will only be limited by the RC time constants of the external output components. When driving a 75Ω cable, place the 75Ω source termination resistor as close to the amplifier output as possible.

DC Accuracy

Since the RC6334 is a voltage-feedback amplifier, the inverting and non-inverting inputs have similar impedances and bias currents. To minimize offset voltage, match the source resistances seen by inverting and non-inverting inputs.

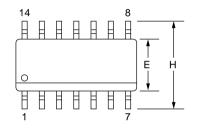
Feedback Components

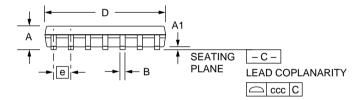
Because the RC6334 is a voltage-feedback amplifier, it facilitates using reactive (capacitive and inductive) feedback components for implementing filters, integrators, sample/ hold circuits, etc. The feedback network and the parasitic capacitance at the inverting (summing junction) input create a pole and affect the transfer function of the circuit. For stable operation, minimize the parasitic capacitance and equivalent resistance of the components used in the feedback circuit.

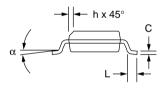
Circuit Board

High-frequency applications require good grounding, power supply decoupling, low parasitic capacitance and inductance, and good isolation between the inputs to minimize their crosstalk. Avoid coupling from output to input to prevent positive feedback.

Notes:


Notes:


Mechanical Dimensions – 14 Pin SOIC Package


Symbol	Inches		Millim	Notes	
Symbol	Min.	Max.	Min.	Max.	Notes
Α	.053	.069	1.35	1.75	
A1	.004	.010	0.10	0.25	
В	.013	.020	0.33	0.51	
С	.008	.010	0.19	0.25	5
D	.336	.345	8.54	8.76	2
Е	.150	.158	3.81	4.01	2
е	.050	BSC	1.27 BSC		
Н	.228	.244	5.79	6.20	
h	.010	.020	0.25	0.50	
L	.016	.050	0.40	1.27	3
N	1	4	14		6
α	0°	8°	0°	8°	
CCC	_	.004	_	0.10	

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E" do not include mold flash. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. "L" is the length of terminal for soldering to a substrate.
- 4. Terminal numbers are shown for reference only.
- 5. "C" dimension does not include solder finish thickness.
- 6. Symbol "N" is the maximum number of terminals.

Ordering Information

Product Number	Temperature Range	Screening Package		Package Marking
RC6334M	0° to 70°C	Commercial	14 Pin Narrow SOIC	RC6334M

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics Semiconductor Division 350 Ellis Street Mountain View CA 94043 415 968 9211 FAX 415 966 7742